DH cryptosystem - определение. Что такое DH cryptosystem
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое DH cryptosystem - определение

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

Airco DH.1         
  • 3-view
1915 MILITARY AIRCRAFT BY AIRCO
Dh.1; Airco D.H.1; DH.1; DH.1A
The Airco DH.1 was an early military biplane of typical "Farman" pattern flown by Britain's Royal Flying Corps during World War I.
De Havilland DH.18         
  • De Havilland DH.18 3-view drawing from ''Flight'', 24 March 1921
  • DH.18A ''G-EARO'' of Instone Air Lines
1920 BIPLANE AIRLINER BY DE HAVILLAND
DH.18; Airco DH.18; De Havilland D.H.18; De Havilland DH.18A
The de Havilland DH.18 was a single-engined British biplane transport aircraft of the 1920s built by de Havilland.
Airco DH.6         
1916 TRAINER AIRCRAFT BY AIRCO
D.H.6; Dh.6; Dh6; DH.6; De Havilland DH.6; Dh 6; Airco D.H.6; Alula D.H.6
The Airco DH.6 was a British military trainer biplane used by the Royal Flying Corps during the First World War.

Википедия

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.